
CS433: Internet of Things
NCS463: Internet of Things

Dr. Ahmed Shalaby
http://bu.edu.eg/staff/ahmedshalaby14

http://bu.edu.eg/staff/ahmedshalaby14

Things: Sensors & Actuators

❑ Things

⚫ Examples

⚫ Design Issues

⚫ Interface

❑ Processing Unit

❑ Programming Model

❑ Real Time Operating System (RTOS)

Internet of Things – Architecture

Things: Sensors & Actuators
❑ Sensor is a device that measures a physical quantity

→ Input / “Read from the physical world”

❑ Actuator is a device that modifies a physical quantity

Output / “Write to the physical world” →

⚫ Cameras

⚫ Accelerometers

⚫ Gyroscopes

⚫ Strain gauges

⚫ Microphones

⚫ Magnetometers

⚫ Radar/Lidar

⚫ Chemical sensors

⚫ Pressure sensors

⚫ Switches

⚫ Motor controllers

⚫ LEDs, lasers

⚫ LCD and plasma displays

⚫ Loudspeakers

⚫ Switches

⚫ Valves – fluids

⚫ Solenoids – magnetic

Sensors & Actuators

Source: Wired Magazine

Sensors & Actuators: Design Issues

❑ Calibration
⚫ Relating measurements to the physical phenomenon

⚫ Can dramatically increase manufacturing costs

❑ Nonlinearity
⚫ Measurements may not be proportional to physical phenomenon

⚫ Correction may be required

⚫ Feedback can be used to keep the operating point in the linear region

❑ Sampling
⚫ Aliasing – insufficient sampling frequency - Nyquist sampling rate.

⚫ Missed events

❑ Noise
⚫ Analog signal conditioning

⚫ Digital filtering

⚫ Introduces latency

❑ Failures
⚫ Redundancy (sensor fusion problem)

⚫ Attacks (e.g. Stuxnet attack)

Sensors & Actuators: ADC/DAC

❑ Analog-to-Digital Converter (ADC)

⚫ Takes an analog signal and creates
a digital representation of this signal.

⚫ Enables the connection to many
different types of sensors, such as
distance sensors, temperature
sensors, light-level sensors, and so
on.

❑ Digital to Analog Converter (DAC)

⚫ takes the digital signals and creates
an analog representation of these
signals

⚫ Enables the connection to many
different types of actuators, such as
speakers, Motor controllers, LEDs,
lasers, LCD, and so on.

https://microcontrollerslab.com/analog-to-digital-adc-converter-working/

Sensors & Actuators: Interfaces .

❑ Simple Digital I/O: GPIO

⚫ Open collector circuits are often used on
GPIO (general-purpose I/O) pins of a
microcontroller.

⚫ The same pin can be used for input and
output. And multiple users can connect
to the same bus.

❑ Parallel/Serial Interface

⚫ Parallel
Transfer a byte of data at a time

faster, easier

⚫ Serial
Transfers a bit after another

cheaper, ideal for a long distance through

Sensors & Actuators: Interfaces ..

❑ Direction

⚫ Simplex: data can move only in one direction.

⚫ Half Duplex: data can move in two directions but not at the same time.

⚫ Full Duplex: data can move in two directions at the same time.

❑ Synchronous vs. Asynchronous

⚫ Synchronous
⚫ Clock pulse should be transmitted during data transmission.

⚫ Only one side generates a clock at the same time.

⚫ Asynchronous
⚫ Clock pulse is not transmitted.

⚫ The two sides should generate a clock pulse.

⚫ There should be a way to synchronize the two sides.

Sensors & Actuators: Interfaces …

❑ Parallel (one wire per bit)

⚫ ATA: Advanced Technology Attachment

⚫ PCI: Peripheral Component Interface

⚫ SCSI: Small Computer System Interface

⚫ …

❑ Serial (one wire per direction)

⚫ RS-232

⚫ SPI: Serial Peripheral Interface bus

⚫ I2C: Inter-Integrated Circuit

⚫ USB: Universal Serial Bus

⚫ SATA: Serial ATA

⚫ …

❑ Mixed (one or more “lanes”)

⚫ PCIe: PCI Express

⚫ users can connect to the same bus.

Processing Units

Arduino Raspberry Pi BeagleBone Jetson Nano

❑ PROCESSOR

⚫ Arduino has ATmega328, runs @ 16MHz.

⚫ The Raspberry Pi 4 has a Broadcom BCM2711 system-on-chip, and it runs on

a 1.5-GHz quad-core 64-bit ARM Cortex-A72 CPU @ 1.5 GHz.

⚫ The Beaglebone Black has AM335x ARM® Cortex-A8 @1GHz.

⚫ The Jetson Nano runs on a quad-core ARM Cortex-A57 64-bit @ 1.42 GHz.

Processing & Programming Models.

Processing & Programming Models..

❑ Simple (Pooling – Loop Structure)

⚫ It goes around repeatedly executing the same sequence of actions.

⚫ Simple - Code is reliable and easy to understand.

⚫ Performance / Scalability / task priorities.

❑ Loop / ISR

⚫ consider placing all the non-critical tasks in the main loop and locating the

time-sensitive tasks in Interrupt Service Routines (ISRs).

⚫ Challenge is the distribution of tasks between the main loop and the ISRs.

❑ RTOS (Real Time OS)

⚫ Divide the application into tasks that run concurrently.

⚫ The essence of real-time computing is not only that the computer responds to

its environment fast enough, but that it responds reliably fast enough.

RTOS - IoT Operating Systems

⚫ IoT OS is essential for IoT applications. It enables devices and applications to

connect with other systems, such as cloud platforms and services.

⚫ The IoT OS manages limited resources such as memory bandwidth, data volumes,

and processing power to transmit, collect and store data. For example, IoT OS is

used to control traffic lights, digital televisions, smart meters, ATMs, airplane

controls, and elevators, among many other use cases.

⚫ The IoT OS runs the software, and efficiently without any latency on the host IoT

device.

https://www.intuz.com/top-iot-operating-systems-for-iot-devices

Top IoT Operating Systems

Hardware/

Software

Guide on Top 17 IoT Operating Systems For IoT Devices | Intuz

https://www.intuz.com/top-iot-operating-systems-for-iot-devices

IoT Operating Systems Parameters .

❑ Scalability:
The operating system must be scalable for any type of device. That means both

integrators and developers need to be familiar with the operating system when it

comes to gateways and nodes.

❑ Footprint:
Since the devices will always come with a bag of constraints, it is essential to

choose an operating system with low power, processing, and memory

requirements. The overheads incurred by you should be minimal at the end of

the day.

❑ Reliability:
This is a critical factor to note for mission-critical systems. For instance, Industrial

IoT devices are at remote locations and have to work for years without

hampering business continuity. Your operating system should be able to fulfill

specific certifications for IoT apps.

❑ Portability:
Operating systems isolate apps from the specifics of the hardware, hence

leading to greater portability. Usually, an OS is ported to different interface and

hardware platforms to the board support package (BSP) in a standardized

format, such as POSIX calls.

https://www.intuz.com/blog/guide-on-iot-and-iiot
https://www.intuz.com/blog/guide-on-iot-and-iiot

IoT Operating Systems Parameters . .

❑ Connectivity:
This one is obvious, but your operating system should support connectivity

protocols such as WiFi, IEEE, Ethernet, and so on. There is no point in IoT apps

if they cannot connect without any hassle.

❑ Security:
The operating system of your choice should be safe and secure to use, allowing

you to add on some aspects in the form of SSL support, secure boot,

components, and encryption drivers.

❑ Modularity:
Every operating system must mandatorily have a kernel core. All other

functionalities can be included as add-ons if so required by the IoT app you are

building.

Top IoT Operating Systems

❑ Raspbian Pi: an operating system used by Raspberry Pi.

❑ FreeRTOS: popular, ported to more than 30 microcontroller platforms

❑ Contiki: IoT OS suitable for low-powered internet connectivity.

❑ ARM Mbed OS:

user-friendly development environment powered by Node-RED, provides the

same set of functionalities as cloud computing platforms such as Amazon Web

Services (AWS) and Microsoft Azure.

❑ Windows 10 IoT:

easy-to-use base for creating and running IoT devices, it automatically

downloads and installs all the necessary drivers and programs for your device.

❑ Embedded Linux:

An enhanced version of the Linux Kernel and an embedded graphics stack are

being used by the operating system.

❑ TinyOS: low-power wireless devices.

POSIX RT Extension, Micropython, RIOT OS, Ubuntu Core, Ubuntu MATE, OSMC, Tizen, eLinux OS, RISC

OS OPEN and RISC OS Pi, OpenWrt, LibreELEC

Ch6: Processes and Operating Systems

COMPUTERS AS COMPONENTS

Overview
• Objective:

– Overview: fundamental abstractions, process and operating system, which are

used in building complex applications.

• Content :
– Multiple Tasks and Multiple Processes

– Preemptive Real-Time Operating Systems

– Priority-Based Scheduling.

– Inter-process Communication Mechanisms

– Evaluating Operating System Performance

– Power Management and Optimization for Processes

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

❑Multiple Tasks and Multiple Processes

– Break the system into multiple tasks in order to manage applications.

• Tasks and Processes

– Process: is a single execution of a program. If we run the same program two

different times, we have created two different processes.

• A process has its own state: (registers; memory)

– Threads: Processes that share the same address space.

– Task: can be composed of several processes or threads.

– Operating System: manages processes, Multiple tasks means multiple

processes.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

❑Multiple Tasks and Multiple Processes

• Multirate Systems

– Tasks may be synchronous or asynchronous, Synchronous tasks may recur at

different rates.

– Processes run at different rates based on the computational needs of the tasks.

– Certain processes must be executed periodically, and each process is executed

at its own rate.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

❑Multiple Tasks and Multiple Processes

• Real-time systems
– Perform a computation to conform to external timing constraints.

– Deadline frequency:

• Periodic. executes on (almost) every period

• Aperiodic. executes on demand

– Deadline type:

• Hard: failure to meet deadlines causes system failure.

• Soft: failure to meet deadline causes a degraded response.

• Firm: late response is useless.

• Timing Requirements on Processes

– The release time: is the time at which the process becomes ready to execute.

– The deadline: specifies when a computation must be finished.

– The period of a process: The time between successive executions.

– The process’s rate is the inverse of its period.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Multiple Tasks and Multiple Processes

• Timing Requirements on Processes

– Before a process can become ready, All the processes on which it depends must

complete and send their data to it. The data dependencies define a partial

ordering on process execution.

– Task Graph: A set of processes with data dependencies.

– Communication among processes that run at different rates cannot be

represented by data dependencies.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Multiple Tasks and Multiple Processes

• Sources of execution time variation:

– Data dependencies.

– Memory system.

– CPU pipeline.

• CPU Metrics

– The initiation time is the time a process actually starts executing on the CPU.

– The completion time is the time at which the process finishes its work.

– CPU utilization: The total execution time of all processes over an interval of time.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Multiple Tasks and Multiple Processes

• Process State and Scheduling

– Scheduling: Choosing the order of running processes.

– Scheduling states: waiting, ready, or executing.

• Waiting: waiting for data from an I/O device or another process or finish all

its work in current period.

• Ready: receives its required data and when it enters a new period.

• Executing: It has all its data, is ready to run, and the scheduler selects the

process as the next process to run.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Multiple Tasks and Multiple Processes

• Scheduling Policies

– Choosing the right scheduling policy

• Ensures that the system will meet all its timing requirements,

• Has influence on the CPU horsepower required to implement the system’s functionality.

– Utilization is one of the key metrics in evaluating a scheduling policy.

– The best policy depends on the required timing characteristics of the processes

being scheduled.

– Resource constraints make schedulability analysis NP-hard.

– Must show that the deadlines are met for all timings of resource requests.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

T ≥ Si Ti

Multiple Tasks and Multiple Processes

• Scheduling Policies

– For periodic processes, the hyperperiod, is the Least Common Multiple (LCM) of

the periods of all the processes. Ex (P1—1, P2—5, Hyperperiod is 5).

• Cyclostatic (Time Division Multiple Access) scheduling.

o An interval equal to the length of the hyperperiod divided into equal-sized time

slots.

o Two factors affect utilization:

– the number of time slots used

– the fraction of each time slot that is used for useful work.

o Always same CPU utilization (assuming constant process execution times).

o Can’t handle unexpected loads → Must schedule a time slot for aperiodic

events.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Multiple Tasks and Multiple Processes

• Scheduling Policies

• Round robin scheduling

o Round robin uses the same hyperperiod as does cyclostatic.

o If a process doesn’t have useful work to do the round-robin scheduler moves

on to the next process in order to fill the time slot with useful work.

o Round-robin scheduling is often used in hardware such as buses.

o it is very simple to implement but it provides some amount of flexibility.

o low scheduling overhead.

• Schedulability and overhead

o The scheduling process consumes CPU time.
Not all CPU time is available for processes.

o Scheduling overhead must be taken into account for the exact schedule.
May be ignored if it is a small fraction of the total execution time.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Multiple Tasks and Multiple Processes

• Running Periodic Processes

– Find a programming technique that allows us to run periodic processes.

– We could pad the loop with useless operations (NOPs) to make the execution

time of an iteration equal to the desired period.

– A timer is a much more reliable way to control the execution of the loop. We

would probably use the timer to generate periodic interrupts.

– Several timers are useful to execute different processes at different rates. Each

timer to each rate.

– A Counters to divide the counter rate. But only for processes at rates simple

multiples of each other.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Multiple timers

Timed loop

Timer + counter

Multiple Tasks and Multiple Processes

• Running Periodic Processes

– Find a programming technique that allows us to run periodic processes.

– We could pad the loop with useless operations (NOPs) to make the execution

time of an iteration equal to the desired period.

– A timer is a much more reliable way to control the execution of the loop. We

would probably use the timer to generate periodic interrupts.

– Several timers are useful to execute different processes at different rates. Each

timer to each rate.

– A Counters to divide the counter rate. But only for processes at rates simple

multiples of each other.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Multiple timers

Timed loop

Timer + counter

❑ Preemptive Real-Time Operating Systems

• OS controls resources:
– who gets the CPU;

– when I/O takes place;

– how much memory is allocated.

• OS needs to keep track of:
– process priorities;

– scheduling state;

– process activation record.

• Processes may be created:
– statically before the system starts;

– dynamically during execution.

• RTOS executes processes-based timing constraints provided by the system design.

• meet timing constraints accurately is to build a preemptive OS and to use priorities to

control what process runs at any given time.

• The main advantage of preemptive scheduling is that it provides better

responsiveness to interactive tasks and ensures that critical tasks are executed as

soon as possible. This is especially important in real-time operating systems and

embedded systems, where certain tasks need to be performed within strict deadlines.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Preemptive Real-Time Operating Systems

• Preemption (Interrupt execution)

– Preemption is an alternative to the C function call as a way to control execution.

– Create new routines that allow us to jump from one subroutine to another at any

point in the program.

– Use a timer in moving between functions whenever necessary based on the

system’s timing constraints.

– Kernel: is part of the OS that determines what process is running.

– Context: The set of registers that define a process’s state.

– Context Switching: switching from one process’s register set to another.

– Process control block: The data structure that holds the state of the process.

• Priorities

– Kernel selects the highest priority process that is ready to run.

– Kernel performs a context switch to the new context.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Preemptive Real-Time Operating Systems

• Processes and Context

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

freeRTOS.org context switch

portSAVE_CONTEXT(); /* Save the context of the current task. */

vTaskIncrementTick(); /* Increment the tick count - this may wake a task. */
vTaskSwitchContext(); /* Find the highest priority task that is ready to run. */
portRESTORE_CONTEXT();

❑ Priority-Based Scheduling.

– Each process has a priority.

– CPU goes to the highest-priority process that is ready.

– Determine an algorithm by which to assign priorities to processes.

– Two major ways to assign priority (Static priority, Dynamic Priority).

• fixed priority.

• time-varying priorities.

– Priority-driven scheduling Rules

• Each process has a fixed priority (1 highest);

• highest-priority ready process gets CPU;

• process continues until done.

– Priority-driven scheduling Example

• P1: priority 1, execution time 10

• P2: priority 2, execution time 30

• P3: priority 3, execution time 20

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

❑ Priority-Based Scheduling.

• Rate-Monotonic Scheduling (RMS)

– RMS is static scheduling.

– provides the highest CPU utilization while ensuring that all processes meet their

deadlines.

– All processes run periodically on a single CPU.

– Context switching time is ignored. (Zero context switch time)

– There are no data dependencies between processes

– The execution time for a process is constant.

– The highest-priority ready process is always selected for execution.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Priority-Based Scheduling.

• Rate-Monotonic Scheduling (RMS)

– The process with the shortest period should always be given higher priority.

– priority inversely proportional to period;

– RMS is the optimal static-priority schedule.

– RMS does not always allow the system to use 100% of CPU.

– Critical instant: scheduling state that gives the worst response time.

– Critical instant occurs when all higher-priority processes are ready to execute.

– Efficient implementation:
• scan processes;

• choose the highest-priority active process.

Priority-Based Scheduling.

• Earliest-Deadline-First Scheduling (EDF)

– Changes process priorities during execution based on initiation times.

– It assigns priorities in order of deadline.

– EDF can use 100% of the CPU.

– The highest-priority process is the one closest to its deadline.

– The major problem is keeping the processes sorted by time to deadline, which

requires recalculating processes at every timer interrupt.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Priority-Based Scheduling.

• Rate-Monotonic Scheduling (RMS) Vs. Earliest-Deadline-First Scheduling (EDF)

– EDF extra higher Utilization of CPU But Complex to implement.

– RMS easier to ensure all deadlines But lower CPU Utilization.

• Priority Scheduling Problems

– Missing deadlines, Solutions:

• Get a faster CPU

• Redesign the processes to take less execution time.

• Rewrite the specification to change the deadline.

– Priority inversion, in which a low-priority process blocks the execution of a higher

priority process by keeping hold of its resource. Solution:

• promote the priority of any process when it requests a resource from the OS.

– no data dependencies between processes assumption is wrong.

• Scheduling for low power - DVFS:

– First set the clock speed to meet the performance goal in the critical interval.

– Set clock speed for less-critical intervals in the order of importance.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

❑ Inter-process Communication Mechanisms

– a process can send a communication in one of two ways: blocking or nonblocking.

• blocking communication: the process goes into the waiting state until it receives a response.

• Nonblocking communication: allows the process to continue execution after sending the

communication.

– Major styles of interprocess communication: shared memory and message passing.

• Shared Memory Communication

– the CPU wants to send data to the device, it writes to the shared location. The

I/O device then reads the data from that location.

– To avoid shared location conflict between CPU and I/O devices

▪ There must be a flag that tells the CPU when the data from the I/O device is ready in

order.

▪ an atomic test-and-set operation first reads a location and then sets it to a specified

value atomic (no interruption).

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

❑ Inter-process Communication Mechanisms

• Message Passing Communication

– Each communicating entity has its own message send/receive unit.

– The message is not stored on the communications link, but rather at the senders/

receivers at the endpoints.

– freeRTOS.org queues

• Queues can be used to pass messages.

• Operating system manages queues.

• Signals

– A signal is analogous to a software interrupt.

– A signal is generated by a process and transmitted to another process by the

operating system. It changes the flow of control but does not pass parameters.

– Unix ^c sends a kill signal to process.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

❑ Evaluating Operating System Performance

– Context switching Time.

• In practice, OS context switch overhead is small (hundreds of clock cycles) relative to many

common task periods (ms – ms).

– Interrupt latency and critical sections.

• Interrupts are turned off in the critical section.

• Long critical sections add software delays to interrupt latency.

• Interrupt handling latency has non-zero hardware latency.

• Interrupt service handler (ISH) is called at interrupt and provides minimal functions.

• Interrupt service routine (ISR) is a process invoked by ISH and performs most of the device

handling and takes time to execute.

– Interrupt priorities and interrupt latency.

– Cache Conflict problem.

– RTOS simulation

• Some RTOSs provide scheduling simulators.

• Schedule a mix of processes using I/O traces.

– The Process time variation due to execution (Average, Best, and Worst).

• Even if individual processes are well-behaved, processes may interfere with each other.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

❑ Power Management and Optimization for Processes

– The RTOS and system architecture can use static and dynamic power management

mechanisms to help manage the system’s power consumption.

– Power modes requires an analysis of the overall system activity.

■ Avoiding a power-down mode can cost unnecessary power.

■ Powering down too soon can cause severe performance penalties.

– Predictive shutdown: The goal is to predict when the next request will be made and to

start the system just before that time.

– Several predictive techniques are possible. A very simple technique is to use fixed

times.

• if the system does not receive inputs during

an interval Ton, it shuts down.

• a powered-down system waits for a period

Toff before returning to the power-on mode

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Conclusion

– Writing a single program that simultaneously satisfies deadlines at multiple rates is

too difficult because the control structure of the program.

– fundamental abstractions, process and operating system, which are used in building

complex applications.

– A process is a single thread of execution.

– Pre-emption is the act of changing the CPU’s execution from one process to another.

– A scheduling policy is a set of rules that determines the process to run.

– Rate-monotonic scheduling (RMS) is a simple but powerful scheduling policy.

– Interprocess communication mechanisms allow data to be passed reliably between

processes.

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

Raspbian - Raspberry Pi OS

– Raspbian is an unofficial port of Debian wheezy armhf with compilation settings adjusted to

produce code that uses "hardware floating point", the "hard float" ABI and will run on the

Raspberry Pi.

– Debian is a free operating system for your computer and includes the basic set of

programs and utilities that make your computer run along with many thousands of other

packages. Debian has a reputation within the Linux community for being very high-quality,

stable, and scalable. Debian also has an extensive and friendly user community that can

help new users with support for practically any problem.

– The port is necessary because the official Debian wheezy armhf release is compatible only

with versions of the ARM architecture later than the one used on the Raspberry Pi

(ARMv7-A CPUs and higher, vs the Raspberry Pi's ARMv6 CPU).

– The goal of Raspbian is to become the leading OS of choice for all users of the Raspberry

Pi.

– Raspbian images are produced by various people. For newcomers we recommend the

images provided by the Raspberry Pi foundation.

– Raspbian tries to stay as close to Debian as reasonably possible. Any information you find

that applies to Debian will almost certainly apply to the same version of Raspbian.

Source: Raspbian

https://www.raspbian.org/

POSIX – Realtime OS

– Unix was developed in the 1960s at Bell Laboratories to support text processing.

– POSIX (Portable Operating System Interface) is a standard version of Unix.

– Processes may run under different scheduling policies.

– POSIX.1b: Real-time extensions (IEEE Std 1003.1b-1993, later appearing as librt—

the Realtime Extensions library)[9]

▪ Priority Scheduling

▪ Real-Time Signals

▪ Clocks and Timers

▪ Semaphores

▪ Message Passing

▪ Shared Memory

▪ Asynchronous and Synchronous I/O

▪ Memory Locking Interface

Assignment

– Provide a summary of Contiki OS.

Hint:
Contiki Protothreads - YouTube

COMPUTERS AS COMPONENTS Ch6 : Processes and Operating Systems

https://www.youtube.com/watch?v=mSUtVggFAzY

	Slide 1
	Slide 2: Things: Sensors & Actuators
	Slide 3: Internet of Things – Architecture
	Slide 4: Things: Sensors & Actuators
	Slide 5: Sensors & Actuators
	Slide 6: Sensors & Actuators: Design Issues
	Slide 7: Sensors & Actuators: ADC/DAC
	Slide 8: Sensors & Actuators: Interfaces .
	Slide 9: Sensors & Actuators: Interfaces ..
	Slide 10: Sensors & Actuators: Interfaces …
	Slide 11: Processing Units
	Slide 12: Processing & Programming Models.
	Slide 13: Processing & Programming Models..
	Slide 14: RTOS - IoT Operating Systems
	Slide 15: Top IoT Operating Systems
	Slide 16: IoT Operating Systems Parameters .
	Slide 17: IoT Operating Systems Parameters . .
	Slide 18: Top IoT Operating Systems
	Slide 19: Ch6: Processes and Operating Systems COMPUTERS AS COMPONENTS
	Slide 20: Overview
	Slide 21: Multiple Tasks and Multiple Processes
	Slide 22: Multiple Tasks and Multiple Processes
	Slide 23: Multiple Tasks and Multiple Processes
	Slide 24: Multiple Tasks and Multiple Processes
	Slide 25: Multiple Tasks and Multiple Processes
	Slide 26: Multiple Tasks and Multiple Processes
	Slide 27: Multiple Tasks and Multiple Processes
	Slide 28: Multiple Tasks and Multiple Processes
	Slide 29: Multiple Tasks and Multiple Processes
	Slide 30: Multiple Tasks and Multiple Processes
	Slide 31: Multiple Tasks and Multiple Processes
	Slide 32: Preemptive Real-Time Operating Systems
	Slide 33: Preemptive Real-Time Operating Systems
	Slide 34: Preemptive Real-Time Operating Systems
	Slide 35: Priority-Based Scheduling.
	Slide 36: Priority-Based Scheduling.
	Slide 37: Priority-Based Scheduling.
	Slide 38: Priority-Based Scheduling.
	Slide 39: Priority-Based Scheduling.
	Slide 40: Inter-process Communication Mechanisms
	Slide 41: Inter-process Communication Mechanisms
	Slide 42: Evaluating Operating System Performance
	Slide 43: Power Management and Optimization for Processes
	Slide 44: Conclusion
	Slide 45: Raspbian - Raspberry Pi OS
	Slide 46: POSIX – Realtime OS
	Slide 47: Assignment

